Assessing the pharmacokinetic profile of the CamMedNP natural products database: an in silico approach

نویسندگان

  • Fidele Ntie-Kang
  • James A Mbah
  • Lydia L Lifongo
  • Luc C Owono Owono
  • Eugene Megnassan
  • Luc Meva'a Mbaze
  • Philip N Judson
  • Wolfgang Sippl
  • Simon MN Efange
چکیده

BACKGROUND Drug metabolism and pharmacokinetic (DMPK) assessment has come to occupy a place of interest during the early stages of drug discovery today. Computer-based methods are slowly gaining ground in this area and are often used as initial tools to eliminate compounds likely to present uninteresting pharmacokinetic profiles and unacceptable levels of toxicity from the list of potential drug candidates, hence cutting down the cost of the discovery of a drug. RESULTS In the present study, we present an in silico assessment of the DMPK profile of our recently published natural products database of 1,859 unique compounds derived from 224 species of medicinal plants from the Cameroonian forest. In this analysis, we have used 46 computed physico-chemical properties or molecular descriptors to predict the absorption, distribution, metabolism and elimination (ADME) of the compounds. This survey demonstrated that about 50% of the compounds within the Cameroonian medicinal plant and natural products (CamMedNP) database are compliant, having properties which fall within the range of ADME properties of >95% of currently known drugs, while >73% of the compounds have ≤2 violations. Moreover, about 72% of the compounds within the corresponding 'drug-like' subset showed compliance. CONCLUSIONS In addition to the previously verified levels of 'drug-likeness' and the diversity and the wide range of measured biological activities, the compounds in the CamMedNP database show interesting DMPK profiles and, hence, could represent an important starting point for hit/lead discovery from medicinal plants in Africa.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CamMedNP: Building the Cameroonian 3D structural natural products database for virtual screening

BACKGROUND Computer-aided drug design (CADD) often involves virtual screening (VS) of large compound datasets and the availability of such is vital for drug discovery protocols. We present CamMedNP - a new database beginning with more than 2,500 compounds of natural origin, along with some of their derivatives which were obtained through hemisynthesis. These are pure compounds which have been p...

متن کامل

RP-HPTLC Retention Data in Correlation with the In-silico ADME Properties of a Series of s-triazine Derivatives

The properties relevant to pharmacokinetics and pharmacodynamics of four series of synthesized s-triazine derivatives have been studied by Quantitative structure-retention relationship (QSRR) approach. The chromatographic behavior of these compounds was investigated by using reversed-phase high performance thin-layer chromatography (RP-HPTLC). Chromatographic retention (RM0) was correlated with...

متن کامل

RP-HPTLC Retention Data in Correlation with the In-silico ADME Properties of a Series of s-triazine Derivatives

The properties relevant to pharmacokinetics and pharmacodynamics of four series of synthesized s-triazine derivatives have been studied by Quantitative structure-retention relationship (QSRR) approach. The chromatographic behavior of these compounds was investigated by using reversed-phase high performance thin-layer chromatography (RP-HPTLC). Chromatographic retention (RM0) was correlated with...

متن کامل

Effects of Salinispora derived metabolites against multidrug resistance, an in-silico study

Background: Multidrug resistance (MDR) is known to defeat most chemotherapies as one of the main anticancer strategies. The role of overexpression/overactivation of ABC transporters, especially P-glycoprotein (P-gp), in the development of chemotherapy has long been demonstrated. Salinispora is a marine actinomycete genus known for the production of novel bioactive metabolites. Methods: In this...

متن کامل

Designing and analyzing the structure of Tat-BoNT/A(1-448) fusion protein: An in silico approach

Clostridium botulinum type A (BoNT/A) produces a neurotoxin recently found to be useful as an injectable drug for the treatment of abnormal muscle contractions. The catalytic domain of this toxin which is responsible for the main toxin activity is a zinc metalloprotease that inhibits the release of neurotransmitter mediators in neuromuscular junctions. A cell penetrating cationic peptide, Tat, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013